Chapter 33 Containers, Layout
Managers, and Borders

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Objectives

To explore the internal structures of the Swing container (§33.2).
To explain how a layout manager works 1n Java (§33.3).

To use CardLayout and BoxLayout (§§33.3.1-33.3.2).

To to use the absolute layout manager to place components in the
fixed position (§33.3.3).

To create custom layout managers (§33.4).

To use JScrollPane to create scroll panes (§33.5).
To use JTabbedPane to create tabbed panes (§33.6).
To use JSplitPane to create split panes (§33.7).

V=

To use various borders for Swing components (§338yT @

N—

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All -
rights reserved. 0132130807

How a Component 1s Displayed?

User interface components like JButton cannot be
displayed without being placed in a container. A container
1s a component that 1s capable of containing other
components. You do not display a user interface
component; you place it in a container, and the container
displays the components 1t contains.

The base class for all containers 1s java.awt.Container,
which 1s a subclass of java.awt.Component. The Contamer
class has the following essential functions:

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

What Does a Container Do?

The base class for all containers 1s java.awt.Container,
which 1s a subclass of java.awt.Component. The
Container class has the following essential functions:

=]t adds and removes components using various add and
remove methods.

=]t maintains a layout property for specifying a layout
manager that i1s used to lay out components in the
container. Every container has a default layout managef

f\

=]t provides registration methods for the

java.awt.event.ContainerEvent . Y 4

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’J‘
rights reserved. 0132130807

Structures of the Swing Containers

A lightweight container used

behind the scenes by Swing's The glass pane ﬂpats on top
top-level containers, such as of everything. It is a hidden
JFrame, JApplet, and JDialog pane by default.
. \ JRootPane
A container that manages
the optional menu bar and JLayeredPane «————Optional
the content pane JMenuBar

Glass Pane

Content Panc
The content pane is an instance
of Container. By default, itis a
JPanel with BorderLayout. This
is the container where the user

interface components are added.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All -
rights reserved. 0132130807

JErame

JFrame, a Swing version of Frame, is a top-level container
for Java graphics applications. Like Frame, JFrame 1s
displayed as a standalone window with a title bar and a
border. The following properties are often useful in JFrame.

— contentPane
— 1conlmage
— jMenuBar
— layout

— title

— resizable

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

JApplet

JApplet is a Swing version of Applet. Since 1t 1s a subclass
of Applet, 1t has all the functions required by the Web
browser. Here are the four essential methods defined 1n
Applet:

— contentPane
— jMenuBar

— layout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

JPanel

Panels act as sub-containers for grouping user interface
components. javax.swing.JPanel 1s different from JFrame
and JApplet. First, JPanel is not a top-level container; 1t
must be placed inside another container, and it can be
placed inside another JPanel. Second, since JPanel 1s a
subclass of JComponent, it 1s a lightweight component, but
JErame and JApplet are heavyweight components.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

About Layout Managers

= Each container has a layout manager, which 1s
responsible for arranging the components in a container.

= The container's setLayout method can be used to set a
layout manager.

= Certain types of containers have default layout
managers.

= The layout manager places the components according to
the layout manager's rules, property settings and the ,
constraints associated with each component.

= Each layout manager has a particular set of rulesspemﬁc
to that layout manager. ¥

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’J‘
rights reserved. 0132130807

The Size of Components 1n a Container

The si1ze of a component 1n a container 1s determined by
many factors, such as:

= The type of layout manager used by the container.

= The layout constraints associated with each component

= The size of the container.

= Certain properties common to all components (such as
preferredSize, minimumSize, maximumSize,
alignmentX, and alignmentY).

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

preferredSize, minimumSize, and maximumSize

The preferredSize property indicates the ideal size at which the component
looks best. Depending on the rules of the particular layout manager, this
property may or may not be considered. For example, the preferred size
of a component 1s used 1n a container with a FlowLayout manager, but
ignored 1f 1t is placed in a container with a GridLayout manager.

The minimumSize property specifies the minimum size at which the
component 1s useful. For most GUI components, minimumsSize 1s the
same as preferredSize. Layout managers generally respect
minimumSize more than preferredSize.

The maximumSize property specifies the maximum size neede e
component, so that the layout manager won't wastefully give space to a
component that does not need it. For instance, BorderLayout 11m1ts\ thel

center component's size to 1ts maximum size, and gives the space to |
edge components. N M ’ 4

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’J‘
rights reserved. 0132130807

CardLavyout

CardLayout places components in the container as cards. Only one
card is visible at a time, and the container acts as a stack of cards.
The ordering of cards 1s determined by the container's own
internal ordering of its component objects. CardLayout defines a
set of methods that allow an application to flip through the cards
sequentially or to show a specified card directly.

~_~Component 1

¢ _—~Component 2

vGap
¢ / -_____.C()mponen'[3
| I'(//

Component 4

<€<— hGap —

Components in the
container of
CardLayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

java.awt.LayoutManager

java.awt.CardLayout

~hgap: int
Fvgap: int

+CardLayout()
+CardLayout(hgap: int, vgap: int)
+first(parent: Container): void
+last(parent: Container): void

+next(parent: Container): void
+previous(parent: Container): void

+show(parent: Container, name: String): void

To add a component into a container, use the add(Component c, S‘Erlng narﬁ%l
method defined in the LayoutManager interface. The String parameter, name,
gives an explicit identity to the component in the container.

Using CardLayout

Horizontal gap.

Vertical gap.

Creates a default CardLayout manager with no gaps.

Creates a default CardLayout manager with the specified gaps.
Flips to the first card of the contaner.

Flips to the last card of the container.

Flips to the next card of the specified container. If the currently visible
card 1s the last one, this method flips to the first card in the layout.

Flips to the next card of the specified container. If the currently visible
card 1s the last one, this method flips to the first card in the layout.

Flips to the component that was added to this layout with the specified
name.

e
N o

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Example: Using CardLayout

Objective: Create two
panels 1n a frame. The
first panel holds named
components. The
second panel uses
buttons and a choice
box to control which

First Next Previous Last |Image |5 ¥

RE=E

g0 5.0 J
(2

P

component 1s shown.

N

ShowCardLayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q

rights reserved. 0132130807

Companion
Website

The GridBagLayout manager 1s the most flexible and the
most complex. It 1s similar to the GridLayout manager in
the sense that both layout managers arrange components 1n
a grid. The components can vary 1n size, however, and can

GridBagLayout

be added 1n any order in GridBagLayout.

A 2 3
I
I Label
|
: : : Text
: Text : ! Area 2
1 : 1 IDan~1 000000 |y———
: Aliea : JPanel : Text
: I | Field

I |
—_—= te—————————= FeeY—Y——————= ===
| : : '
: 1| DButton 1 (| Button 2 :
[, L _________ _: __________ .!. _________ e
0 1 2 3

rights reserved. 0132130807

Liang, ntroduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All

Companion

wse | GridBagConstraints

Each GridBaglayout uses a dynamic rectangular grid of cells,
with each component occupying one or more cells called its
display area. Each component managed by a GridBaglLayout 1s
associated with a GridBagConstraints instance that specifies how
the component is laid out within its display area. How a
GridBaglayout places a set of components depends on the
GridBagConstraints and minimum size of each component, as
well as the preferred size of the component's container.

To use GridBagLayout effectively, you must customize the 9%
GridBagConstraints of one or more of its components. You '\
customize a GridBagConstraints object by setting onefp—iL more of
its public instance variables. These variables specify the |
component location, size, growth factor, anchor, inset, ﬁlhng, an

padding. >

—

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’”
rights reserved. 0132130807

Companion

wesit_T1dBagConstraints Parameters

Location parameters: gridx and gridy

The variables gridx and gridy specify the cell at the upper
left of the component's display area, where the upper-
leftmost cell has the address gridx=0, gridy=0. Note that
gridx specifies the column in which the component will
be placed, and gridy specifies the row in which it will be
placed. In Figure 33.5, Button 1 has a gridx value of I’
and a gridy value of 3, and Label has a gridx Vaghle of 0
and a gridy value of 0. TN

N 4
y 4

R

-
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’J‘

rights reserved. 0132130807

Companion

wersite __[BagConstraints Parameters, cont.

Size parameters: gridwidth and gridheight

The variables gridwidth and gridheight specify the
number of cells in a row (for gridheight) or column (for
gridwidth) 1n the component's display area. The default
value 1s 1. In Figure 33.5, the JPanel in the center
occupies two columns and two rows, so its gridwidth 1s
2, and its gridheight is 2. Text Area 2 occupies one rows,

and one column; therefore its gridwidth is 1, ami 1ts ra
gridheight 1s 1. (e,

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i’qﬁh
rights reserved. 0132130807

Companion

wersite __[BagConstraints Parameters, cont.

Growth parameters: weightx and weighty

The variables weightx and weighty specify the extra horizontal
and vertical space to allocate for the component when the

resulting layout 1s smaller horizontally than the area it needs to
fill.

The GridBaglLayout manager calculates the weight of a column, to
be the maximum weightx (weighty) of all the components ina”
column (row). The extra space 1s distributed to each cgimmn (row)

in proportion to its weight. Ly ‘

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Companion

wersite __[BagConstraints Parameters, cont.

Anchor parameter:

The variable anchor specifies where 1n the area the component 1s
placed when it does not fill the entire area. Valid values are:

GridBagConstraints. CENTER (the default)
GridBagConstraints. NORTH
GridBagConstraints. NORTHEAST
GridBagConstraints. EAST
GridBagConstraints. SOUTHEAST
GridBagConstraints. SOUTH
GridBagConstraints. SOUTHWEST
GridBagConstraints. WEST
GridBagConstraints. NORTHWEST

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Companion

wersite __[BagConstraints Parameters, cont.

Filling parameter:

The variable anchor specifies where 1n the area the component 1s
placed when it does not fill the entire area. Valid values are:

GridBagConstraints. CENTER (the default)
GridBagConstraints. NORTH
GridBagConstraints. NORTHEAST
GridBagConstraints. EAST
GridBagConstraints. SOUTHEAST
GridBagConstraints. SOUTH
GridBagConstraints. SOUTHWEST
GridBagConstraints. WEST
GridBagConstraints. NORTHWEST

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Companion

wersite__[BagConstraints Parameters, cont.

Inset and padding parameters:

0 1 2 3 4 5 6 & 8 9 10

0 . .
1 Inset top :
2 ipady t
3 Inset [« ipadx > < ipadx > Inset

T leﬂ Component rlght ;
*
5 ipady ¢
S T S __Inset bottom _
7

B T T N T P P TR TR

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Website Example: Using

GridBaglayout Manager

Objective: Write a -Io] x|

Resize the Window and Study GridBagL ayout

program that uses Tent rea
the GridBagl ayout
manager to create a
layout.

ext Area

JTextFieI

Cancel

ShowGridBaglayout Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Using No Layout Manager

You can place components 1n a container without using
any layout manager. In this case, you need to set layout
for the container using

container.setLayout(null);

The components must be placed using the component S
instance method setBounds ().

o~ L
A ;ﬂ
T
Cf&\;—#f

Tip: Do not use the no-layout-manager option to develop
platform-independent applications. Y 4

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Example: Using No Layout
Manager

This example shows -[ofx]
a program that

places the same
components 1n the
same layout as 1n
the preceding
example, but
without using a

layout manager. ShowNoLayout

Resize the Window and Study No Layout

Text Area ext Area

TextField

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

BoxLayout

Flow layout arranges components 1n rows.
javax.swing.BoxLayout 1s a Swing layout manager that
arranges components in a row or a column. To create a
BoxLayout, use the following constructor:

public BoxlayLayout(Container target, int axis)

This constructor 1s different from other layout constructors.
I'he constructor creates a layout manager that 1s dedlcate of
to the given target container. The axis parametemfs

BoxLayout.X AXIS or BoxLayout.Y_ AXIS, which

specifies whether the components are laid out horlzontally
or vertically. w N

y 4

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’”
rights reserved. 0132130807

Creating a BoxLayout

For example the following code creates a horizontal
BoxLayout for panel pl:

JPanel pl =new JPanel();

BoxLayout boxLayout = new BoxLayout(pl,
BoxLayout.X AXIS);

pl.setLayout(boxLayout);

N

ey
Jﬁfxﬂ
7,
J .

C/% "ﬁ

You still need to invoke the setLayout method on\
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All T

rights reserved. 0132130807

The Box Class

You can use BoxLayout in any container, but 1t 1s simpler
to use the Box class, which is a container of BoxLayout. To
create a Box container, use one of the following two static
methods:

Box box1 = Box.createHorizontalBox();
Box box2 = Box.create VerticalBox();

The former creates a box that contains components
horizontally, and the latter creates a box that contains
components vertically.

You can add components to a box in the same way that y<
add them to the containers of FlowLayout or GrIdLayout

using the add method, as follows:
box1.add(new JButton("A Button")); L

N
L) ,:\

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’”
rights reserved. 0132130807

Fillers in BoxLayout

A strut stmply adds some space between components. The static
method createHorizontalStrut(int) in the Box class 1s used to create a
horizontal strut, and the static method create VerticalStrut(int) to
create a vertical strut.

A rigid area 1s a two-dimensional space that can be created using the
static method createRigidArea(dimension) in the Box class. For
example, the following code adds a rigid area 10 pixels wide and 20
pixels high into a box.

box2.add(Box.createRigidArea(new Dimension(10, 20));

N -

A glue separates components as much as possible. For ex&mple by
adding a glue between two components in a horizontal box, you
place one component at the left end and the other at the rlght end
glue can be created using the Box.createGlue() method. o

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All ‘{q
rights reserved. 0132130807

Example: Using BoxLayout

Manager
Problem: Write a program that r— _iolx]
creates a horizontal box and a & &

vertical box. The horizontal box
holds two buttons with print and
save 1cons. The horizontal box holds
four buttons for selecting flags.
When a button 1n the vertical box 1s
clicked, a corresponding flag icon is
displayed 1n the label centered in the

Canada

Norway

Germany

applet.

ShowBoxLayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Companion

Websit OverlayLayout

OverlayLayout 1s a Swing layout manager that arranges components on top
of each other. To create an OverlayLayout, use the following constructor:

public OverlayLayout(Container target)

The constructor creates a layout manager that is dedicated to the given
target container. For example, the following code creates an OverlayLayout
for panel p1:

JPanel pl = new JPanel();
OverlayLayout overlayLayout = new OverlayLayout(p1);

pl.setLayout(overlayLayout); s

e
JYa VS Nz

\ O

You still need to invoke the setLayout method on p1 to set the layout* U
manager. Y.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Companion

wosie | Qrder of Components 1n
OverlayLayout Containers

A component 1s on top of the other 1f 1t 1s added to the
container before the other one. Suppose components
pl, p2 and p3 are added to a container of the
OverlayLayout 1n this order, then pl 1s on top of p2 and
p2 1s on top of p3.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Webtie Example: Using

OverlayLayout Manager

Problem: Write a program that overlays two buttons 1n a panel
of OverlayLayout.

& ShowOverlayLayout o =] B4l & showoverlayLayout | = 0| x|

Button 1's alignmentX 0.1 Button 1's alignmentX 0.1

Button 1's alignmentY 0.1 Button 1's alignmentY |0.1

B B AP &
”_ E(‘ E‘ |
Button 2's alignmentX |0.5 Button 1 | Button 2's alignmentX |0.5 n1 I

Button 2's alignmentY 0.6 Button 2's alignmentY 0.6
Button 1's opaque true = Button 1's opaque false =
ShowOverlaylLayout
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q

rights reserved. 0132130807

Companion
Website

SpringlLayout

Springlayout 1s a new Swing layout manager introduced in
JDK 1.4. The i1dea of SpringLayout is to put a flexible spring
around a component. The spring may compress or expand to
place the components in desired locations.

To create a SpringlLayout, use 1ts no-arg constructor:

public Springlayout()

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Companion

Websie The Spring Class

A spring 1s an instance of the Spring class, which can be created
using one of the following two static methods:

public static Spring constant(int pref)
Returns a spring whose minimum, preferred, and maximum values
cach have the value pref.

public static Spring constant(int min, int pref, int max)
Returns a spring with the specified minimum, preferred, and maxig
values. |

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Companion

Websit Manipulating Springs

Each spring has a preferred value, minimum value, maximum
value, and actual value. The getPreferredValue(),
getMinimumValue(), getMaximumValue(), and getValue()
methods retrieve these values. The setValue(int value) method
can be used to set an actual value.

The Spring class defines the static sum(Spring s, Spring s2) to
produce a combined new spring, the static minus(Spring s) to

produce a new spring running on the opposite direction, an
static max(Spring s1, Spring s2) to produce a new qumg Wlth
larger values from sl and s2. (N

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i:“’”
rights reserved. 0132130807

Companion

v ample: Using SpringLayout

Manager

Problem: Write a program that places a button in the center of the
container.

£ ShowSpringLayout ;@'l'

‘ Button 1

ShowSpringl.ayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Creating Custom Layout Managers

In addition to the layout managers provided in Java, you can
create your own layout managers. To do so, you need to
understand how a layout manager lays out components. A
container's setLayout method specifies a layout manager for the
container. The layout manager is responsible for laying out the
components and displaying them 1n a desired location with an
appropriate size. Every layout manager must directly or
indirectly implement the LayoutManager interface.

For instance, FlowLayout directly implements LayoutMan
and BorderLayout implements LayoutManager?2, Whlth _/

implements LayoutManager. The LayoutManager interface |
provides the following methods for laying out components 411 a,
container: -

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All i““dﬁ‘?
rights reserved. 0132130807

How Does a Container Interact with a
Layout Manager

The add, remove, and validate methods in Container invoke the

methods defined in the LayoutManager interface.

java.awt.Container

java.awt.LayoutManager

add

» addlayoutComponent

» removel.ayoutComponent

remove

validate

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

>» layoutContainer
- tommmmm - 1 VAN
I | v ~ o Ny —
! I M —
' ' "y
FlowLayout BorderLayout|

Example: Creating A Custom
Layout Manager

Problem: This example creates a layout manager named DiagonalLayout that
places the components in a diagonal. To test DiagonallLayout, the example creates
an applet with radio buttons named “FlowLayout,” “GridLayout,” and
“DiagonalLayout,” as shown 1n the figure. You can dynamically select one of
these three layouts in the panel.

=[ol x|
| Button1
Button 2
| Button3
Button 4

Select a Layout Manager

) FlowLayout (GridLayout (® DiagonallLayout

ShowDiagonallayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Custom DiagonalLayout Manager

Jjava.awt.LayoutManager
RS o
I JavaBeans properties with get and set
DiagonélLayom / methods omitted in the UML diagram.
-gap: int The gap between the components.
-lastFill: boolean A Boolean value indicating whether the last component in the
container is stretched to fill the rest of the space.
-majorDiagonal: boolean A Boolean value indicating whether the components are
placed along the major diagonal or the subdiagonal.
+Diagonal Layout() Creates a DiagonalLayout.

Diagonall.ayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

JScrollPane

Often you need to use a scrollbar to scroll the contents of
an object that does not fit completely into the viewing
area. JScrollBar and JSlider can be used for this
purpose, but you have to manually write the code to
implement scrolling with 1t. JScrollPane is a component
that supports automatic scrolling without coding.

A scroll pane 1s a component that supports automatically
scrolling without coding.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Scroll Pane Structures

A JScrollPane can be viewed as a specialized container with a view
port for displaying the contained component. In addition to horizontal
and vertical scrollbars, a JScrollPane can have a column header, a row
header, and corners.

Comer Column header Comer
Component Component
| | |
JViewport
Row header —
s/
Scrollable Component ———Vertical scroll bars

Comer . | ————Comer
Component Component

ation, Inc. All Q
J

Liang, Introduction to Java Programming, Eighth EditiorHorlzontal scroll bars

rights reserved. 0132130807

Using J ScrollPane

JComponent

T

JScrollPane

#columnHeader: JViewport
firowHeader: JViewport
#horizontalScrollBarPolicy: int

#verticalScrollBarPolicy: int

#viewport: Jviewport
#horizontalScrollBar: JScrollBar
#verticalScrollBar: JscrollBar

-viewportBorder: Border

+JScrollPane()

+JScrollPane(view: Component)

+JScrollPane(view: Component, vsbPolicy:

int, hsbPolicy: int)

+JScrollPane(vsbPolicy: int, hsbPolicy: int)

+setCorner(key: String, corner:
Component): void

+setViewportView(view: Component): void

All the properties have their supporting

accessor and mutator methods.

CTarTy, IMTTOUUCoTT (O Java T TOYTartIrTT "35 B L I T R A L R R R e e e L P TN T T

rights reserved. 0132130807

The column header. (default: null)
The row header. (default: null)

The display policy for the horizontal scrollbar. (default:
JScrollPane. HORIZONTAL SCROLLBAR AS NEEDED)

The display policy for the horizontal scrollbar. (default:
JScrollPane. VERTICAL SCROLLBAR AS NEEDED)

The scroll pane's viewport.
The scroll pane's horizontal scrollbar.
The scroll pane's vertical scrollbar.

The border around the viewport.

Creates an empty JScrollPane where both horizontal and vertical
scrollbars appear when needed.

Creates a JScrollPane that displays the contents of the specified
component, where both horizontal and vertical scrollbars appear
whenever the component's contents are larger than the view.

Creates a JScrollPane that displays the contents of the specified
component with the specified horizontal and vertical scrollbars
policies.

Creates an empty JScrollPane with the specified horizontal and
vertical scrollbars policies.

Adds a component in one of the scroll panes corners.

Adds a view component to the viewport.

Example: Using Scroll Panes

Problem: This example uses a scroll pane to browse a large map.
The program lets you choose a map from a combo box and display 1t

in the scroll pane,

& scroliMap =] RN & ScroliMap ‘ -10| x|
-Select a map to display -Select a map to display
|Indiana v || |onio v
A errrroreon 11
Chi . ary " IsothoElkhart 3 '''''''''' PO
O oy 0
T Diparsiso Bend : Toledo
. g Fort Wayne, ; Y o Sandusky prook Pa
3) O B . Maumee
¥ Wabash .~ \ 4 2)
R /..____—- \\ v .I-'mdlag
3 Marion ™
E: }(okomo’ * -
4 » i

ScrollMap

Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

JTabbedPane

= A tabbed pane provides a set of mutually exclusive tabs
for accessing multiple components.

_igfx

‘.I-I'. ,l v

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Using JTabbedPane

Usually you place the |

JComponent

=

panels inside a

JTabbedPane

JTabbedPane and
associate a tab with

#tabPlacement: int

cach panel.
JTabbedPane is easy
to use, since the
selection of the panel
1s handled
automatically by
clicking the
corresponding tab.
You can switch
between a group of
panels by clicking on
a tab with a given title

+JTabbedPane()
+JTabbedPane(tabPlacement: int)
+getlconAt(index: int): Icon
+setlconAt(index: int, icon: Icon): void
+getTabCount(): int

+getTabPlacement(): int
+setTabPlacement(tabPlacement: int) : void
+getTitleAt(int index) : String
+setTitleAt(index: int, title: String): void
+getToolTipTextAt(index: int): String

+setToolTipTextAt(index: int, toolTipText:
String): void

+getSelectedComponent(): Component

+setSelectedComponent(c: Component):
void

+getSelectedIndex(): int

+setSelectedIndex(index: int): void

+indexOfComponent(component:
Component): void

+indexOfTab(icon: Icon): int
+indexOfTab(title: String): int

and/or 1CO1. Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All

rights reserved. 0132130807

The tab placement for this tabbed pane. Possible values are:

JTabbedPane. TOP, JTabbedPane. BOTTOM, JTabbedPane.LEFT,

and JTabbedPane RIGHT. (default: JTabbedPane. TOP.

Constructs a JTabbedPane with default tab placement.
Constructs a JTabbedPane with the specified tab placement.
Retumns the icon at the specified tab index.

Sets the icon at the specified tab index.

Returns the number of tabs in this tabbed pane.
Returns the placement of the tabs for this tabbed pane.
Sets the placement of the tabs for this tabbed pane.
Returns the tab title at the specified tab index.

Sets the tab title at the specified tab index.

Returns the tool tip text at the specified tab index.

Sets the tool tip text at the specified tab index.

Returns the currently selected component for this tabbed pane.

Sets the currently selected component for this tabbed pane.

Returns the currently selected index for this tabbed pane.
Sets the currently selected index for this tabbed pane.
Returns the index of the tab for the specified component.

Returns the index of the tab for the specified icon.
Returns the index of the tab for the specified title.

B

Example: Using JTabbedPane

Problem: This example (o] x|
uses a tabbed pane with ((Sauare | Rectangle | Circle | oval |

four tabs to display four
types of figures: Square,
Rectangle, Circle, and
Oval. You can select a

figure to display by

clicking the

corresponding tab. DisplayFigure l ~ Run
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q

rights reserve d. 0132130807

JSplitPane

JSplitPane 1s a convenient Swing container that contains
two components with a separate bar known as a divider.

& JsplitPane | == R & SplitPane = 10| x|
: Component 1
Component1 | Component 2
; Component 2
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q

rights reserved. 0132130807

JComponent

1 T
Using
° #oontinuousLayout: boolean A Boolean value indicating whether or not the views are
J S p ltP ane continuously redisplayed while resizing.

#dividerSize: int Size of the divider.
#lastDividerLocation: int Previous location of the split pane.
#leftComponent: Component The left or top component.
The bar can #oneTouchExpandable: boolean A Boolean property with the default value false. If the property 1s

true, the divider has an expanding and contracting look, so that it

diVi de the can expand and contract with one touch.

. Horientation: int Specifies whether the container is divided horizontally or vertically.
container The possible values are JSplitPane. HORIZONTAL SPILT and
JSplitPane. VERTICAL_SPLIT. The default value is

hori zontally or JSplitPane. HORIZONTAL SPILT, which divides the container into

a left part and a right part.

Vertically, and Can #rlghtCOmponeﬂt Component The rlght or bOttOlTl Component.

be dragged tO +JSplitPane() Creates a JSplitPane configured to arrange the child components
side-by-side horizontally with no continuous.
Change the +JSplitPane(newOrientation: int) Creates a JSplitPane configured with the specified orientation and
no continuous layout.
1 1 ion: int, reates a itPane with the specified orientation and continuous
am nt f a +JSplitPane(newOrientation: int C JSplitP h the specified d
newContinuousLayout: boolean) layout.
plitPane(newOrientation: int, reates a itPane with the specified orientation and continuous
+ JSplitPane(newOrientat t C JSplitP h the specified d
newContinuousLayout: boolean, layout, and the left (top) and right (bottom) components.

newLeftComponent: Component,
C Omp Onent y newRightComponent: Component)
+ISplitPane(newOrientation: int, Creates a JSplitPane with the specified orientation, and the left (top)

newL§ftComponent: Component, and right (bottom) components. No continuous layout.
newRightComponent: Component)

. All the properties have the accessor and
Liang, Intrody |
mutator methods.

Example: Using JSplitPane

Problem: Write a program that uses radio buttons to let the
user select a FlowLayout, GridLayout, or BoxLayout

manager dynamically for a panel. The panel contains four
buttons. The description of the currently selected layout
manager 1s displayed in a text area. The radio buttons,
buttons, and text area are placed in two split panes.

o x

) FlowLayout | Button 1 Button 2

E::j BoxLayout ..
/| GridLayout arranges =

components in a rectangular
| grid of cells. The container is

| divided into equal-sized
‘| rectangles, and one component

=1
) FlowLayout -

O GridLayout | BUtton1 | Button2 | Buttor
& Borlayou] |

BoxLayout is a Swing layout
‘| manager that arranges components
“|in a row or a column.

wlLayout

Sho

k\‘ﬂ/ P I

Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All

rights reserved. 0132130807

e

Swing Borders

A Swing border is defined in
the Border interface. Every

instance of JComponent can BevelBorder (——SoftBevelBorder

set a border through the border

property defined in CompoundBorder

JComponent. If a border is ,

present, it replaces the inset. e There are eight concrete border
classes: BevelBorder,
SoftBevelBorder,

Border M— - —-- AbstractBorder IQ EtchedBorder CompoundBorder,
EmptyBorder, EtchedBorder,
LineBorder LineBorder, MatteBorder, and
The AbstractBorder class TitledBorder.

implements an empty border
with no size. This provides a
convenient base class from
which other border classes can TitledBorder
be easily derived.

MatteBorder

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Static Method for Creating Borders

=createTitledBorder (String title)
=createlLoweredBevelBorder ()
=createRalsedBevelBorder ()
=createl.ineBorder (Color color)

w=createlineBorder (Color color, 1int
thickness)

=createbEtchedBorder ()

=createkEtchedBorder (Color highlight, Color
shadow, boolean selected)

=createEmptyBorder () \ﬂ,\‘/
=createMatteBorder (1nt top, 1nt leftﬁ@int.ﬁ
bottom, 1int right, Icon tilelIcon) (e A

=createCompoundBorder (Border outsideBdrdef;y
Border 1nsideBorder) v, V 4

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Example: Using Borders

Problem: This example gives a prmrms =Tk

program that creates and G

borders. You can select a border s .

with a title or without a title. ¥ Titled © Lowered Bevel
. . Positi Justification *; Raised Beve

For a border without a title, you T || Fatsad Bevel

(' ABOVE_BOTTOM ‘e ABOVE_TOP () LEFT i) Etched
can choose a border style from o - op © cener | ® Line

Lowered BGVGI, Raised BGVCI, () BELOW_BOTTOM () BELOW_TOP () RIGHT ::ﬂm‘;
Etched, Line, Matte, or Empty.
For a border with a title, you
can specify the title position
and justification. You can also
embed another border into a BorderDemo
titled border.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

Companion

Website Pluggable Look-and-Feel

The pluggable look-and-feel feature lets you design a single
set of GUI components that automatically has the look-and-
feel of any OS platform. The implementation of this feature
1s independent of the underlying native GUI, yet it can
imitate the native behavior of the native GUI.

Currently, Java supports the following three look-and-feel
styles:

~inix
Hello, world | ® Metal > Motif) Windows
Metal - '
- —ini x
Motif
. uello,world| _Metal | (e Motif| Windows
Windows
_ioi x|

Hello, world | Metal ¢ Motit & {Aindows

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

weste | Setting Look-And-Feel

The javax.swing.UIManager class manages the look-and-
feel of the user interface. You can use one of the following
three methods to set the look-and-feel for Metal, Motif, or
Windows:

UlIManager.setLookAndFeel
(UIManager.getCrossPlatformLookAndFeelClassName());
UlIManager.setLookAndFeel
(new com.sun.java.swing.plaf.motif. MotifLookAndFeel());
UlManager.setLookAndFeel o
(new com.sun.java.swing.plaf.windows. WlndowsLookAndFeel())

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

Companion Setting Look-And-Feel in

Website
Static Initialization Block

To ensure that the setting takes effect, the setLookAndFeel method
should be executed before any of the components are instantiated.
Thus, you can put the code 1n a static block, as shown below:

static {
try {
// Set a look-and-feel, e.qg.,
//UIManager.setLookAndFeel
// (UIManager.getCrossPlatformLookAndFeelClassName ()) ;
}
catch (UnsupportedLookAndFeelException ex) {}
} N

~
RS
N

;

P ;T
7

NI
oG

<

Static initialization blocks are executed when the class i\s/load_ed\.;f

)

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All q
rights reserved. 0132130807

