
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

1

Chapter 33 Containers, Layout
Managers, and Borders

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

2

Objectives
 To explore the internal structures of the Swing container (§33.2).

 To explain how a layout manager works in Java (§33.3).

 To use CardLayout and BoxLayout (§§33.3.1-33.3.2).

 To to use the absolute layout manager to place components in the
fixed position (§33.3.3).

 To create custom layout managers (§33.4).

 To use JScrollPane to create scroll panes (§33.5).

 To use JTabbedPane to create tabbed panes (§33.6).

 To use JSplitPane to create split panes (§33.7).

 To use various borders for Swing components (§33.8).

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

3

How a Component is Displayed?

User interface components like JButton cannot be
displayed without being placed in a container. A container
is a component that is capable of containing other
components. You do not display a user interface
component; you place it in a container, and the container
displays the components it contains.

The base class for all containers is java.awt.Container,
which is a subclass of java.awt.Component. The Container
class has the following essential functions:

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

4

What Does a Container Do?

The base class for all containers is java.awt.Container,
which is a subclass of java.awt.Component. The
Container class has the following essential functions:

It adds and removes components using various add and
remove methods.

It maintains a layout property for specifying a layout
manager that is used to lay out components in the
container. Every container has a default layout manager.

It provides registration methods for the
java.awt.event.ContainerEvent .

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

5

Structures of the Swing Containers
A lightweight container used
behind the scenes by Swing's
top-level containers, such as
JFrame, JApplet, and JDialog

A container that manages
the optional menu bar and
the content pane

The content pane is an instance
of Container. By default, it is a
JPanel with BorderLayout. This
is the container where the user
interface components are added.

The glass pane floats on top
of everything. It is a hidden
pane by default.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

6

JFrame

JFrame, a Swing version of Frame, is a top-level container
for Java graphics applications. Like Frame, JFrame is
displayed as a standalone window with a title bar and a
border. The following properties are often useful in JFrame.

– contentPane

– iconImage

– jMenuBar

– layout

– title

– resizable

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

7

JApplet

JApplet is a Swing version of Applet. Since it is a subclass
of Applet, it has all the functions required by the Web
browser. Here are the four essential methods defined in
Applet:

– contentPane

– jMenuBar

– layout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

8

JPanel

Panels act as sub-containers for grouping user interface
components. javax.swing.JPanel is different from JFrame
and JApplet. First, JPanel is not a top-level container; it
must be placed inside another container, and it can be
placed inside another JPanel. Second, since JPanel is a
subclass of JComponent, it is a lightweight component, but
JFrame and JApplet are heavyweight components.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

9

About Layout Managers

 Each container has a layout manager, which is
responsible for arranging the components in a container.

 The container's setLayout method can be used to set a
layout manager.

 Certain types of containers have default layout
managers.

 The layout manager places the components according to
the layout manager's rules, property settings and the
constraints associated with each component.

 Each layout manager has a particular set of rules specific
to that layout manager.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

10

The Size of Components in a Container

The size of a component in a container is determined by
many factors, such as:

 The type of layout manager used by the container.

 The layout constraints associated with each component

 The size of the container.

 Certain properties common to all components (such as
preferredSize, minimumSize, maximumSize,
alignmentX, and alignmentY).

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

11

preferredSize, minimumSize, and maximumSize

The preferredSize property indicates the ideal size at which the component
looks best. Depending on the rules of the particular layout manager, this
property may or may not be considered. For example, the preferred size
of a component is used in a container with a FlowLayout manager, but
ignored if it is placed in a container with a GridLayout manager.

The minimumSize property specifies the minimum size at which the
component is useful. For most GUI components, minimumSize is the
same as preferredSize. Layout managers generally respect
minimumSize more than preferredSize.

The maximumSize property specifies the maximum size needed by a
component, so that the layout manager won't wastefully give space to a
component that does not need it. For instance, BorderLayout limits the
center component's size to its maximum size, and gives the space to
edge components.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

12

CardLayout
CardLayout places components in the container as cards. Only one

card is visible at a time, and the container acts as a stack of cards.
The ordering of cards is determined by the container's own
internal ordering of its component objects. CardLayout defines a
set of methods that allow an application to flip through the cards
sequentially or to show a specified card directly.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

13

Using CardLayout

To add a component into a container, use the add(Component c, String name)
method defined in the LayoutManager interface. The String parameter, name,
gives an explicit identity to the component in the container.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

14

Example: Using CardLayout

ShowCardLayout Run

Objective: Create two
panels in a frame. The
first panel holds named
components. The
second panel uses
buttons and a choice
box to control which
component is shown.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

15

GridBagLayout
The GridBagLayout manager is the most flexible and the
most complex. It is similar to the GridLayout manager in
the sense that both layout managers arrange components in
a grid. The components can vary in size, however, and can
be added in any order in GridBagLayout.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

16

GridBagConstraints

Each GridBagLayout uses a dynamic rectangular grid of cells,
with each component occupying one or more cells called its
display area. Each component managed by a GridBagLayout is
associated with a GridBagConstraints instance that specifies how
the component is laid out within its display area. How a
GridBagLayout places a set of components depends on the
GridBagConstraints and minimum size of each component, as
well as the preferred size of the component's container.

To use GridBagLayout effectively, you must customize the
GridBagConstraints of one or more of its components. You
customize a GridBagConstraints object by setting one or more of
its public instance variables. These variables specify the
component location, size, growth factor, anchor, inset, filling, and
padding.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

17

GridBagConstraints Parameters

Location parameters: gridx and gridy

The variables gridx and gridy specify the cell at the upper
left of the component's display area, where the upper-
leftmost cell has the address gridx=0, gridy=0. Note that
gridx specifies the column in which the component will
be placed, and gridy specifies the row in which it will be
placed. In Figure 33.5, Button 1 has a gridx value of 1
and a gridy value of 3, and Label has a gridx value of 0
and a gridy value of 0.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

18

GridBagConstraints Parameters, cont.

Size parameters: gridwidth and gridheight

The variables gridwidth and gridheight specify the
number of cells in a row (for gridheight) or column (for
gridwidth) in the component's display area. The default
value is 1. In Figure 33.5, the JPanel in the center
occupies two columns and two rows, so its gridwidth is
2, and its gridheight is 2. Text Area 2 occupies one row
and one column; therefore its gridwidth is 1, and its
gridheight is 1.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

19

GridBagConstraints Parameters, cont.

Growth parameters: weightx and weighty

The variables weightx and weighty specify the extra horizontal
and vertical space to allocate for the component when the
resulting layout is smaller horizontally than the area it needs to
fill.

The GridBagLayout manager calculates the weight of a column to
be the maximum weightx (weighty) of all the components in a
column (row). The extra space is distributed to each column (row)
in proportion to its weight.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

20

GridBagConstraints Parameters, cont.
Anchor parameter:

The variable anchor specifies where in the area the component is
placed when it does not fill the entire area. Valid values are:

GridBagConstraints.CENTER (the default)

GridBagConstraints.NORTH

GridBagConstraints.NORTHEAST

GridBagConstraints.EAST

GridBagConstraints.SOUTHEAST

GridBagConstraints.SOUTH

GridBagConstraints.SOUTHWEST

GridBagConstraints.WEST

GridBagConstraints.NORTHWEST

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

21

GridBagConstraints Parameters, cont.
Filling parameter:

The variable anchor specifies where in the area the component is
placed when it does not fill the entire area. Valid values are:

GridBagConstraints.CENTER (the default)

GridBagConstraints.NORTH

GridBagConstraints.NORTHEAST

GridBagConstraints.EAST

GridBagConstraints.SOUTHEAST

GridBagConstraints.SOUTH

GridBagConstraints.SOUTHWEST

GridBagConstraints.WEST

GridBagConstraints.NORTHWEST

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

22

GridBagConstraints Parameters, cont.

Inset and padding parameters:

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

23

Example: Using
GridBagLayout Manager

RunShowGridBagLayout

Objective: Write a
program that uses
the GridBagLayout
manager to create a
layout.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

24

Using No Layout Manager

You can place components in a container without using
any layout manager. In this case, you need to set layout
for the container using

container.setLayout(null);

The components must be placed using the component’s
instance method setBounds().

Tip: Do not use the no-layout-manager option to develop
platform-independent applications.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

25

Example: Using No Layout
Manager

This example shows
a program that
places the same
components in the
same layout as in
the preceding
example, but
without using a
layout manager. RunShowNoLayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

26

BoxLayout
Flow layout arranges components in rows.
javax.swing.BoxLayout is a Swing layout manager that
arranges components in a row or a column. To create a
BoxLayout, use the following constructor:

public BoxlayLayout(Container target, int axis)

This constructor is different from other layout constructors.
The constructor creates a layout manager that is dedicated
to the given target container. The axis parameter is
BoxLayout.X_AXIS or BoxLayout.Y_AXIS, which
specifies whether the components are laid out horizontally
or vertically.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

27

Creating a BoxLayout

For example the following code creates a horizontal
BoxLayout for panel p1:

JPanel p1 = new JPanel();

BoxLayout boxLayout = new BoxLayout(p1,
BoxLayout.X_AXIS);

p1.setLayout(boxLayout);

You still need to invoke the setLayout method on
p1 to set the layout manager.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

28

The Box Class
You can use BoxLayout in any container, but it is simpler
to use the Box class, which is a container of BoxLayout. To
create a Box container, use one of the following two static
methods:

Box box1 = Box.createHorizontalBox();

Box box2 = Box.createVerticalBox();

The former creates a box that contains components
horizontally, and the latter creates a box that contains
components vertically.

You can add components to a box in the same way that you
add them to the containers of FlowLayout or GridLayout
using the add method, as follows:

box1.add(new JButton("A Button"));

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

29

Fillers in BoxLayout
A strut simply adds some space between components. The static
method createHorizontalStrut(int) in the Box class is used to create a
horizontal strut, and the static method createVerticalStrut(int) to
create a vertical strut.

A rigid area is a two-dimensional space that can be created using the
static method createRigidArea(dimension) in the Box class. For
example, the following code adds a rigid area 10 pixels wide and 20
pixels high into a box.

box2.add(Box.createRigidArea(new Dimension(10, 20));

A glue separates components as much as possible. For example, by
adding a glue between two components in a horizontal box, you
place one component at the left end and the other at the right end. A
glue can be created using the Box.createGlue() method.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

30

Example: Using BoxLayout
Manager

Problem: Write a program that
creates a horizontal box and a
vertical box. The horizontal box
holds two buttons with print and
save icons. The horizontal box holds
four buttons for selecting flags.
When a button in the vertical box is
clicked, a corresponding flag icon is
displayed in the label centered in the

applet.

RunShowBoxLayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

31

OverlayLayout
OverlayLayout is a Swing layout manager that arranges components on top
of each other. To create an OverlayLayout, use the following constructor:

public OverlayLayout(Container target)

The constructor creates a layout manager that is dedicated to the given
target container. For example, the following code creates an OverlayLayout
for panel p1:

JPanel p1 = new JPanel();

OverlayLayout overlayLayout = new OverlayLayout(p1);

p1.setLayout(overlayLayout);

You still need to invoke the setLayout method on p1 to set the layout
manager.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

32

Order of Components in
OverlayLayout Containers

A component is on top of the other if it is added to the
container before the other one. Suppose components
p1, p2 and p3 are added to a container of the
OverlayLayout in this order, then p1 is on top of p2 and
p2 is on top of p3.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

33

Example: Using
OverlayLayout Manager

Problem: Write a program that overlays two buttons in a panel
of OverlayLayout.

RunShowOverlayLayout

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

34

SpringLayout

SpringLayout is a new Swing layout manager introduced in
JDK 1.4. The idea of SpringLayout is to put a flexible spring
around a component. The spring may compress or expand to
place the components in desired locations.

To create a SpringLayout, use its no-arg constructor:

public SpringLayout()

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

35

The Spring Class

A spring is an instance of the Spring class, which can be created
using one of the following two static methods:

· public static Spring constant(int pref)
Returns a spring whose minimum, preferred, and maximum values

each have the value pref.

· public static Spring constant(int min, int pref, int max)
Returns a spring with the specified minimum, preferred, and maximum

values.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

36

Manipulating Springs

Each spring has a preferred value, minimum value, maximum
value, and actual value. The getPreferredValue(),
getMinimumValue(), getMaximumValue(), and getValue()
methods retrieve these values. The setValue(int value) method
can be used to set an actual value.

The Spring class defines the static sum(Spring s1, Spring s2) to
produce a combined new spring, the static minus(Spring s) to
produce a new spring running on the opposite direction, and the
static max(Spring s1, Spring s2) to produce a new spring with
larger values from s1 and s2.

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

37

Example: Using SpringLayout
Manager

Problem: Write a program that places a button in the center of the
container.

RunShowSpringLayout

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

38

Creating Custom Layout Managers

In addition to the layout managers provided in Java, you can
create your own layout managers. To do so, you need to
understand how a layout manager lays out components. A
container's setLayout method specifies a layout manager for the
container. The layout manager is responsible for laying out the
components and displaying them in a desired location with an
appropriate size. Every layout manager must directly or
indirectly implement the LayoutManager interface.

For instance, FlowLayout directly implements LayoutManager,
and BorderLayout implements LayoutManager2, which
implements LayoutManager. The LayoutManager interface
provides the following methods for laying out components in a
container:

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

39

How Does a Container Interact with a
Layout Manager

The add, remove, and validate methods in Container invoke the
methods defined in the LayoutManager interface.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

40

Example: Creating A Custom
Layout Manager

Problem: This example creates a layout manager named DiagonalLayout that
places the components in a diagonal. To test DiagonalLayout, the example creates
an applet with radio buttons named “FlowLayout,” “GridLayout,” and
“DiagonalLayout,” as shown in the figure. You can dynamically select one of
these three layouts in the panel.

RunShowDiagonalLayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

41

Custom DiagonalLayout Manager

DiagonalLayout

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

42

JScrollPane

Often you need to use a scrollbar to scroll the contents of
an object that does not fit completely into the viewing
area. JScrollBar and JSlider can be used for this
purpose, but you have to manually write the code to
implement scrolling with it. JScrollPane is a component
that supports automatic scrolling without coding.

A scroll pane is a component that supports automatically
scrolling without coding.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

43

Scroll Pane Structures
A JScrollPane can be viewed as a specialized container with a view
port for displaying the contained component. In addition to horizontal
and vertical scrollbars, a JScrollPane can have a column header, a row
header, and corners.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

44

Using JScrollPane

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

45

Example: Using Scroll Panes
Problem: This example uses a scroll pane to browse a large map.
The program lets you choose a map from a combo box and display it
in the scroll pane,

ScrollMap Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

46

JTabbedPane

 A tabbed pane provides a set of mutually exclusive tabs
for accessing multiple components.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

47

Using JTabbedPane
Usually you place the
panels inside a
JTabbedPane and
associate a tab with
each panel.
JTabbedPane is easy
to use, since the
selection of the panel
is handled
automatically by
clicking the
corresponding tab.
You can switch
between a group of
panels by clicking on
a tab with a given title
and/or icon.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

48

Example: Using JTabbedPane

Problem: This example
uses a tabbed pane with
four tabs to display four
types of figures: Square,
Rectangle, Circle, and
Oval. You can select a
figure to display by
clicking the
corresponding tab. DisplayFigure Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

49

JSplitPane

JSplitPane is a convenient Swing container that contains
two components with a separate bar known as a divider.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

50

Using
JSplitPane

The bar can
divide the
container
horizontally or
vertically, and can
be dragged to
change the
amount of space
occupied by each
component.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

51

Example: Using JSplitPane
Problem: Write a program that uses radio buttons to let the
user select a FlowLayout, GridLayout, or BoxLayout
manager dynamically for a panel. The panel contains four
buttons. The description of the currently selected layout
manager is displayed in a text area. The radio buttons,
buttons, and text area are placed in two split panes.

ShowLayout

Run

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

52

Swing Borders

There are eight concrete border
classes: BevelBorder,
SoftBevelBorder,
CompoundBorder,
EmptyBorder, EtchedBorder,
LineBorder, MatteBorder, and
TitledBorder.

A Swing border is defined in
the Border interface. Every
instance of JComponent can
set a border through the border
property defined in
JComponent. If a border is
present, it replaces the inset.

The AbstractBorder class
implements an empty border
with no size. This provides a
convenient base class from
which other border classes can
be easily derived.

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

53

Static Method for Creating Borders

createTitledBorder(String title)

createLoweredBevelBorder()

createRaisedBevelBorder()

createLineBorder(Color color)

createLineBorder(Color color, int
thickness)

createEtchedBorder()

createEtchedBorder(Color highlight, Color
shadow, boolean selected)

createEmptyBorder()

createMatteBorder(int top, int left, int
bottom, int right, Icon tileIcon)

createCompoundBorder(Border outsideBorder,
Border insideBorder)

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

54

Example: Using Borders
Problem: This example gives a
program that creates and
displays various types of
borders. You can select a border
with a title or without a title.
For a border without a title, you
can choose a border style from
Lowered Bevel, Raised Bevel,
Etched, Line, Matte, or Empty.
For a border with a title, you
can specify the title position
and justification. You can also
embed another border into a
titled border.

RunBorderDemo

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

55

Pluggable Look-and-Feel
The pluggable look-and-feel feature lets you design a single
set of GUI components that automatically has the look-and-
feel of any OS platform. The implementation of this feature
is independent of the underlying native GUI, yet it can
imitate the native behavior of the native GUI.
Currently, Java supports the following three look-and-feel
styles:

· Metal
· Motif
· Windows

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

56

Setting Look-And-Feel
The javax.swing.UIManager class manages the look-and-
feel of the user interface. You can use one of the following
three methods to set the look-and-feel for Metal, Motif, or
Windows:

UIManager.setLookAndFeel
(UIManager.getCrossPlatformLookAndFeelClassName());

UIManager.setLookAndFeel
(new com.sun.java.swing.plaf.motif.MotifLookAndFeel());

UIManager.setLookAndFeel
(new com.sun.java.swing.plaf.windows.WindowsLookAndFeel());

Companion
Website

Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All
rights reserved. 0132130807

57

Setting Look-And-Feel in
Static Initialization Block

To ensure that the setting takes effect, the setLookAndFeel method
should be executed before any of the components are instantiated.
Thus, you can put the code in a static block, as shown below:

static {
try {
// Set a look-and-feel, e.g.,
//UIManager.setLookAndFeel
// (UIManager.getCrossPlatformLookAndFeelClassName());

}
catch (UnsupportedLookAndFeelException ex) {}

}

Static initialization blocks are executed when the class is loaded.

Companion
Website

